N.m.r. Assignments of Ring A Hydrogens in Gibberellin A₄ Methyl Esters and some Derivatives

Jake MacMillan * and Christine L. Willis

A.R.C. Research Group, School of Chemistry, The University, Bristol BS8 1TS

Full assignments of the ¹H n.m.r. chemical shifts of the ring A protons in gibberellin A₄, 3-*epi*-gibberellin A₄ and 3-oxogibberellin A₄ methyl esters have been made on the basis of ¹H and ²H n.m.r data of $[2,2,6-^{2}H_{3}]$ -, $[1\beta,3-^{2}H_{2}]$ -, and $[1\beta,2,2,3,6-^{2}H_{5}]$ -labelled derivatives These assignments have been used to determine the stereochemistry of the deuterium atoms in $[1\beta,2\beta-^{2}H_{2}]$ gibberellin A₄ methyl ester, prepared *via* catalytic deuteriogenation of gibberellin A₇ 16,17-epoxide methyl ester.

Functionalisation of ring A of the gibberellins (GAs) plays an important role in the biosynthesis and metabolism of this family of plant hormones. For example in the fungus, Gibberella fujikuroi, GA₄ (1) is metabolised to GA₇ (4) by 1,2didehydrogenation.¹ In higher plants, 2β-hydroxylation is a widespread metabolic process.^{2,3} Isotopically labelled GAs are important in the mechanistic study of such bio-conversions. Thus the preparation of isotopically labelled substrates of defined stereochemistry is required. This paper describes, firstly the preparation of a series of deuteriated derivatives of 3-epi-GA₄ methyl ester (9), GA₄ methyl ester 3-ketone (17), and GA_4 methyl ester (22) and secondly the assignment of the chemical shifts of the signals due to the ring A protons and deuterium atoms in the ¹H and ²H n.m.r. spectra and hence the stereochemistry of isotopic label. These results are applied to the determination of the position and stereochemistry of deuterium atoms introduced into GA_4 (1) by catalytic deuteriogenation.

Results and Discussion

Preparation of Labelled Compounds.—The required [²H]gibberellins (GAs) were prepared from mixtures of GA₄ (1) and GA₇ (4) which are available in reasonable quantities from cultures of the fungus, Gibberella fujikuroi. Oxidation of mixtures of GA₄ and GA₇ methyl esters (22) and (5) with manganese dioxide gave a separable mixture of GA₄ methyl ester (22) and the enone (7). Conjugate reduction of the enone ⁴⁻⁶ with sodium borodeuteride in methanol in the presence of copper(1) chloride gave [1β,3β-²H₂]-3-epi-GA₄ methyl ester (11), containing 1.74 deuterium atoms per molecule, and a minor amount of [1β,3α-²H₂]-GA₄ methyl ester (24), containing 1.64 atoms deuterium per molecule.

Gibberellin A₄ (1) is known⁷ to epimerise at C-3 in basic medium by a retro-aldol reaction via the aldehyde (31). Isotopic exchange of the enolate of the aldehyde provides a method of inserting 2 deuterium atoms at C-2. Thus treatment of GA₄ methyl ester (22) with sodium methoxide in methan-[²H]ol gave [2,2,6-²H₃]-3-*epi*-GA₄ methyl ester (10) containing 2.72 deuterium atoms per molecule, a minor product was [2,2,6-²H₃]-GA₄ methyl ester (23) containing 2.68 deuterium atoms per molecule. In a similar fashion treatment of [1β,3β-²H₂]-3-*epi*-GA₄ methyl ester (11) with sodium methoxide in methan[²H]ol gave [1β,2,2,3β,6α-²H₅]-3-*epi*-GA₄ methyl ester (12) (M^+ , 351) and [1β,2,2,3α,6α-²H₅]-GA₄ methyl ester (25) (M^+ , 351).

The [²H]-labelled GA₄ 3-ketones (18)—(21) were prepared by oxidation of the corresponding alcohols with Jones reagent. The [2,2,6-²H₃]alcohol (10), containing 2.72 atoms deuterium per molecule, gave the ketone (18) without loss of deuterium. The $[1\beta,3\beta-^{2}H_{2}]alcohol$ (11), containing 1.74

 R^1 R² R³ (4) $R^1 = R^2 = H$ (1) H OH н (5) $R^1 = Me, R^2 = H$ (2) H OH он (6) $R^1 = H$, $R^2 = OH$ (3) OH OH OH R⁵ CO₂Me ČO₂Me R^2 R³ R⁴ R⁵ (7) R = H R1 (8) R = OH(9) Н н н н н ²Η (10) н ²H ²H н ²H ²H (11) н н н ²H ²H ²н ²H ²H (12)н ²H н (13)н н Н н (14) н H н ²н ²H (15) н н н (16) ²H н н н н

deuterium atoms per molecule gave the ketone (19) containing 0.82 deuterium atoms per molecule.

 $[1\beta,2\beta-{}^{2}H_{2}]$ Gibberellin A₄ methyl ester (26) was prepared from GA_7 methyl ester (5) as follows. Treatment of the ester (5) with 1 molar equivalent of m-chloroperbenzoic acid in chloroform at 0 °C for 24 h gave the 16,17-epoxide (32). Selective epoxidation of the 16-ene of 13-hydroxygibberellins had previously been achieved ^{8,9} with 2.5 molar equivalents of *m*-chloroperbenzoic acid in dioxane-benzene at 5 °C for 48 h; under these conditions, GA7-methyl ester (5) gave an inseparable mixture of mono- and di-epoxides (32) and (33). Reduction of the mono-epoxide (32) with deuterium gas and a palladium-calcium carbonate catalyst gave [1β,2β-2H2]-GA4-16,17-epoxide (34) containing 1.58 deuterium atoms per molecule; a higher incorporation of deuterium, 1.82 atoms per molecule, was obtained when the catalyst was pre-washed with deuterium oxide. A minor product of these reductions was the hydrogenolysis product (35). Regeneration of the 16-ene from the 16,17-epoxide (34) by the method of Cornforth

R⁵

н 2₁

н

²H

Н

Table 1. Assignments of chemical shifts in ¹H n.m.r. spectra of 3-epi-GA₄ methyl ester (9)

	CDCl ₃	C₅D₅N
lα-H	2.15	
1β-H	1.52	
2α-H	1.45	
2β-Η	2.22	
3β-Н	3.68	3.96
5-H	2.52	2.82
6-H	2.73	3.08

*et al.*¹⁰ gave $[1\beta,2\beta^{-2}H]_2$ -GA₄ methyl ester (26) containing 1.82 deuterium atoms per molecule.

Oxidation of $[1\beta,2\beta^{-2}H_2]$ -GA₄ methyl ester (26) with Jones reagent gave the corresponding ketone (21) containing 1.78 deuterium atoms per molecule. Reduction of this ketone with sodium borohydride in methanol gave $[1\beta,2\beta^{-2}H_2]$ -3-*epi*-GA₄ methyl ester (15) containing 1.69 deuterium atoms per molecule. Exchange of the deuterium at C-2 by a proton by treatment of $[1\beta,2\beta^{-2}H_2]$ -3-*epi*-GA₄ methyl ester (15) with sodium methoxide in methanol gave $[1\beta^{-2}H]$ -3-*epi*-GA₄ methyl ester (16) containing 0.90 deuterium atoms per molecule.

Stereochemical Assignments.—For 3-epi-GA₄ methyl ester (9), the proton assignments, shown in Table 1, were determined by comparison of the ¹H n.m.r. spectrum of the unlabelled compound with the ¹H and ²H n.m.r. spectra of the [²H]-labelled compounds (10)—(12).

The ²H n.m.r. spectrum of $[2,2,6^{-2}H_3]$ -3-*epi*-GA₄ methyl ester (10) in chloroform contained three signals at δ 1.45, 2.25, and 2.70, assigned to deuterons at C-2, C-2, and C-6 respectively. The ¹H n.m.r. spectrum of (10) in [²H]chloroform, compared with the ¹H spectrum of the non-deuteriated compound (9), contained an AB-system with J_{gem} 14 Hz for the C-1 protons at δ 1.52 and 2.10, a doublet at δ 2.70 was absent and a doublet at δ 2.52 was simplified to a singlet, indicating that these resonances were attributable to the 6-and 5-protons respectively. The 3-H signal in (10) was obscured by the methoxy singlet at δ 3.68 but, in [²H₅]-pyridine, it was observed as a separate singlet at δ 3.90, showing that there were two deuterons at C-2.

The ²H n.m.r. spectrum of $[1\beta,3\beta^{-}H_2]$ -3-*epi*-GA₄ methyl ester (11) in chloroform contained two signals at δ 1.52 and

3.68. As shown earlier, the C-1 protons occur at δ 1.52 and 2.10 and the C-3 proton at δ 3.68. Thus conjugate reduction of the enone (7) with sodium borodeuteride had introduced deuterium stereospecifically at C-1. The ¹H n.m.r. spectrum of (11) in [²H]chloroform at 360 MHz contained a broad doublet at δ 2.22 with J_{gem} 14 Hz, the broadening being attributable to equatorial-equatorial coupling. From the absence of any other large coupling, the doublet at δ 2.22 was tentatively assigned to the 2 β -H from which it follows that compound (11) contains a 1 β -deuterium.

The ¹H n.m.r. spectrum of $[1\beta,2,2,3,6^{-2}H_{5}]$ -3-*epi*-GA₄ methyl ester (12), compared with that of the non-deuteriated parent (9), showed the absence of signals at δ 1.50 and 2.20 due to the 1 β -, 2 α -, and 2 β -protons. A multiplet at δ 2.10, assigned to 1 α -H, in the parent (9) had simplified to a singlet in (12).

From these data, it may be concluded that reduction of the enone (7) with sodium borodeuteride gave $[1\beta,3\beta-^2H_2]$ -3-*epi*-GA₄ methyl ester (11). This conclusion, which agrees with previous results,^{4,5} was directly confirmed by comparison of the ¹H n.m.r. spectra of the GA₄ methyl ester 3-ketone (17) and of the deuteriated ketones (18)-(20).

In $[{}^{2}H_{s}]$ pyridine the ${}^{1}H$ n.m.r. spectrum of the undeuteriated ketone (17) contained an 8-line multiplet at δ 2.30 with J_{gem} 14 Hz, $J_{ax,eq}$ 7 Hz and $J_{eq,eq}$ 4 Hz. In the ${}^{1}H$ n.m.r. spectrum of [2,2,6- ${}^{2}H_{3}$]-GA₄ methyl ester 3-ketone (18) the signal at δ 2.30 was simplified to a doublet with J_{gem} 14 Hz; it is

Table 2. Assignments of chemical shifts in ¹H n.m.r. spectra of GA_4 methyl ester 3-ketone (17)

	CDCl ₃	C₅D₅N	C_6D_6
lα-H	2.50	2.30	1.60
1β-H	1.72	1.88	0.95
2α-H	2.62	2.60	2.02
2β-Η	2.62	2.60	2.02
5-H	3.08	3.42	2.84
6-H	2.79	3.09	2.75

therefore assigned to the 1 α -proton. A doublet at δ 1.88 with J_{gem} 14 Hz was assigned to the 1 β -H and the absence of multiplets at δ 2.58 for the 2 α -H and 2 β -H exposed a broad triplet, assignable to 13-H. In the ¹H spectrum of [1 β -²H]-GA₄ methyl ester 3-ketone (19) the multiplets at δ 2.58 (2 α -H and 2 β -H) and δ 2.30 (1 α -H), present in the spectrum of the undeuteriated ketone (17), were simplified and the signal at δ 1.88 due to the 1 β -H was absent. In the ¹H n.m.r. spectrum of [1 β ,2,2,6-²H₄]-GA₄ methyl ester 3-ketone (20), the absence of signals at δ 1.88 (1 β -H) and 2.58 (2 α -H and 2 β -H), and the presence of the singlet at δ 2.30, earlier assigned to 1 α -H, were in accord with deuterium being specifically located at 1 β .

The assignments of the signals for the ring A protons in GA₄-methyl ester 3-ketone (17) are shown in Table 2. They confirm the assignments, shown in Table 1 for 3-*epi*-GA₄ methyl ester (9). The latter assignments differ from those for 3-*epi*-GA₁ methyl ester (27), made by Hanson *et al.*^{5,6} Their assignments were made by analyses of the ¹H n.m.r. spectra of the non-deuteriated compound (27) and the [2,2,6-²H₃], [2β-²H], and [1β,2β,3-²H₃] derivatives (28)---(30) in [²H]-chloroform. They prepared [2β-²H]-3-*epi*-GA₁ methyl ester (29) by reduction of the enone (8) with sodium borohydride in methan[²H]ol in the presence of copper(1) chloride. However, in the absence of ²H n.m.r. data they did not detect that under these conditions a 6 : 4 ratio of 2β- and 2α-deuteriated products (13) and (14) were obtained from the enone (7) (see following paper).

For GA₄ methyl ester (22) the ring A protons were assigned in an analogous manner to that for 3-*epi*-GA₄ methyl ester (9). The assignments are shown in Table 3. The resonances of the 1- and 2- protons were superimposed in [²H]chloroform but were resolved in [²H₆]benzene.

These assignments were used to determine the stereochemistry of the isotopic labelling in $[1\beta,2\beta^{-2}H_2]$ -GA₄ methyl ester (26), prepared via catalytic deuteriogenation of GA7 methyl ester 16,17-epoxide (32). The ²H n.m.r. spectrum of the epoxide (34) showed 1 broad singlet at δ 1.50 and the ¹H n.m.r. spectrum contained a doublet with J 4 Hz at δ 3.85, assigned to 3-H. In the proton-decoupled ¹³C n.m.r. spectrum of $[1\beta_2\beta_2H_2]$ -GA₄ methyl ester (26), the signals at δ 27.1 (C-1) and 28.1 (C-2) were reduced in intensity showing the presence of deuterium at C-1 and C-2. The [2H] n.m.r. spectrum of [1β,2β-2H2]-GA4 methyl ester (26), in benzene, showed a broad singlet at δ 1.45 and the ¹H n.m.r. spectrum contained a doublet (J 4 Hz) at δ 3.85, assigned to 3-H. These data suggested that the deuterium atoms were stereospecifically located at 1 β and 2 β . This assignment was confirmed by analyses of the n.m.r. spectra of the corresponding ketone (21) and 3-epimers (15) and (16).

The ¹H n.m.r. spectrum of $[1\beta,2\beta-^2H_2]$ -GA₄ methyl ester 3-ketone (21) in $[^2H_3]$ pyridine, compared with that of the undeuteriated ketone (17), showed the absence of a signal at δ 1.88, assigned earlier to 1 β -H and a simplification of the multiplet at δ 2.30, assigned to 1 α , to a broad doublet (J 7 Hz). A broad doublet at δ 2.60 (J 7 Hz) was assigned to 2α -H.

Table 3. Assignments of chemical shifts in the ¹H n.m.r. spectra of GA_4 methyl ester (22)

	CDCl ₃	C_6D_6
1α-H	1.70	1.63
1β-H	1.72	1.47
2α-H	1.76	1.67
2β-Η	1.73	1.43
3 α-H	3.81	3.53
5-H	3.17	3.30
6-H	2.67	2.82

The broadening may be due to deuterium coupling and also proton coupling in the 20% of the mono-deuteriated compound, shown by mass spectrometry to be present in the sample. The ²H n.m.r. spectrum of the 3-epimer (15) contained signals at δ 1.5 and 2.20 assigned to 1 β -²H and 2 β -²H respectively. The ¹H n.m.r. spectrum of the 3-epimer (15) in [²H]pyridine contained a doublet, J 11 Hz, at δ 3.95 assigned to 3-H. This axial-axial coupling confirmed the presence of a 2 $\beta(eq)$ -deuterium. Some additional coupling of this signal at δ 3.95 from residual material with two protons at C-2 was evident. Finally the ²H n.m.r. spectrum of [1 β -²H]-3-*epi*-GA₄ methyl ester (16) showed one signal at δ 1.5 (1 β -²H) and the ¹H n.m.r. spectrum, in [²H₅]pyridine, contained a broadened singlet at δ 3.95, assigned to 3-H coupled to both protons on C-2.

These results illustrate the use of ¹H and ²H n.m.r. and of mass spectrometry in assigning isotopic labelling patterns. They establish that catalytic deuteriogenation of GA₇ methyl ester 16,17-epoxide (32) introduces stereospecifically deuterium at the 1β- and 2β- positions. This result is in accord with previous conclusions ^{11,12} that catalytic tritiogenation of GA₃ (6) over 5% palladium on calcium carbonate ¹¹⁻¹³ gives [1β,2β-³H₂]-GA₁ (36) although evidence was only provided for the 2β-stereochemistry with the reasonable assumptions that enzymatic 2β-hydroxylation of GA₁ (2) to GA₈ (3) occurred with retention of configuration ¹⁴ or that dehydration of GA₁ (2) to GA₅ (37) occurred stereospecifically *trans.*¹⁵

The present direct proof that sodium borodeuteride reduction of the GA₇-enone (7) provides a 1β-H-label, combined with the previous ⁴ demonstration that the derived $[1\beta^{-2}H]$ -GA₄ is metabolised to GA₃ (6), with retention of the 1βdeuterium, in cultures of *Gibberella fujikuroi*, provides confirmation of previous evidence by Evans *et al.*¹ that formation of the 1,2-double bond in GA₃ (6) occurs by loss of the 1α-hydrogen. We are currently investigating the conversion of $[1\beta,2\beta^{-2}H_2]$ -GA₄ (38) into GA₇ (4) in both *G*. *fujikuroi* and in higher plants.

Experimental

General experimental details have been described in a previous paper.⁴ Where indicated a 360 MHz Brüker spectrometer was used.

Reduction of ent- 10β -Hydroxy-3-oxo-20-norgibberell-1,16diene-7,19-dioic Acid 7-Methyl Ester 19,10-Lactone (7).—(a) With sodium borohydride-copper(1) chloride. The enone (7) (250 mg) in methanol (30 ml) was stirred with copper(1) chloride. Sodium borohydride (100 mg) was added. After 1 h, the mixture was poured into water which was acidified with hydrochloric acid and extracted with ethyl acetate. Purification of the extract by flash chromatography gave, from elution with 30% ethyl acetate–light petroleum, GA₄ methyl ester (22) (45 mg), m.p. 172–174 °C (lit.,¹⁶ m.p. 176 °C) $\delta_{\rm H}$ 1.15 (s, 18-H₃), 2.67 (d, J 10 Hz, 6-H), 3.17 (d, J 10 Hz, 5-H), 3.70 (s, OMe), 3.81 (m, 3-H), 4.85 and 4.95 (2 br s, 17-H₂); m/z 346 (M^+ , 5%), 328 (7), 314 (100), 284 (63), 268 (20), and 224 (89).

Elution with 40% ethyl acetate-light petroleum gave 3epi-GA₄ methyl ester (9) (160 mg), m.p. 169—171 °C (lit.,¹⁷ m.p. 166—167 °C); $\delta_{\rm H}$ (360 MHz) δ 1.17 (s, 18-H₃), 2.52 (d, J 10 Hz, 5-H), 2.73 (d, J 10 Hz, 6-H), 3.72 (s, OMe), 4.85 and 4.97 (2 br s, 17-H₂); $\delta_{\rm H}$ (C₅D₅N) 1.55 (s, 18-H₃), 2.82 (d, J 10.5 Hz, 5 H), 3.04 (d, J 10.5 Hz, 6-H), 3.70 (s, OMe), 3.94 (m, 3-H), 4.92 and 5.00 (2 br s, 17-H₂); m/z 346, (M^+ , 19%), 328 (79), 314 (100), 300 (62), 286 (74), 268 (30), and 242 (23).

(b) With sodium borodeuteride-copper(1) chloride. The enone (7) (100 mg) in methanol (15 ml) and copper(1) chloride were stirred with sodium borodeuteride (20 mg) for 1 h and then worked up as described in (a). Double elution p.l.c. with ethyl acetate-light petroleum (1:1) gave from the band at R_F 0.6, [1 β ,3-²H₂]-3-*epi*-GA₄ methyl ester (11) (52 mg) (with 1.74 deuterium atoms per molecule); δ_{1H} (360 MHz; C₅D₅N) 1.55 (s, 18-H₃), 2.82 (d, J 10.5 Hz, 5-H), 3.04 (d, J 10.5 Hz, 6-H), 3.70 (s, OMe), 4.92 and 5.00 (2 br s, 17-H₂); δ_{1H} (CHCl₃) 1.52 (1 β -²H) and 3.68 (3-²H); *m*/z 348 (*M*⁺, 22%), 330 (93), 316 (100), 302 (57), 288 (78), 270 (33), 243 (38), and 225 (23).

Extraction of the band at $R_F 0.6$ gave $[1\beta, 3-^2H_2]$ -GA₄ methyl ester (24) (12 mg) (containing 1.64 deuterium atoms per molecule); δ 1.15 (s, 18-H₃), 2.67 (d, J 10.5 Hz, 6-H), 3.17 (d, J 10.5 Hz, 5-H), 3.70 (s, OMe), 4.85 and 4.95 (2 br s, 17-H₂); $\delta_{^{2}H}$ (C₆H₆) 1.45 (1β-²H), 3.5 (3-²H); m/z 348 (M^+ , 4%), 342 (42), 316 (100), 282 (55), 226 (67), and 91 (22).

Extraction of the band at R_F 0.8 gave unchanged starting material (7) (20 mg).

Exchange Reactions with Sodium Methoxide in Methan[²H]ent-3β,10β-Dihydroxy-20-norgibberell-16-ene-7.19ol.—(a) dioic acid 7-methyl ester 19,10-lactone (9). 3-epi-GA₄ methyl ester (9) (50 mg) in methan²H]olic sodium methoxide was heated under reflux for 6 h. The solvent was removed under reduced pressure and the residue diluted with water, acidified with hydrochloric acid, and extracted with ethyl acetate. Double elution p.l.c. of the product with ethyl acetate-light petroleum (1:1) afforded, from the band at R_F 0.45, [2,2,6-²H₃]-3-epi-GA₄ methyl ester (10) (38 mg), m.p. 164—165 °C (lit.,¹⁷ m.p. 166-167 °C) containing 2.72 deuterium atoms per molecule; δ 1.17 (s, 18-H₃), 2.52 (s, 5-H), 3.72 (s, OMe and 3-H), and 4.85 and 4.97 (2 br s, $17-H_2$); δ_H (C₅D₅N) 1.55 (s, 18-H₃), 2.82 (s, 5-H), 3.70 (s, OMe), 3.94 (s, 3-H), 4.92 and 5.00 (s br s, 17-H₂); $\delta_{^{2}H}$ 1.45 (2 α -²H), 2.22 (2 β , ²H), and 2.70 $(6^{-2}H); m/z 349 (M^+, 9\%) 331 (62), 317 (100), 303 (58),$ 289 (69), 271 (19), and 245 (25).

Extraction of the band at $R_{\rm F}$ 0.6 gave $[2,2,6^{-2}{\rm H}_3]$ -GA₄ methyl ester (23) (7 mg) containing 2.68 deuterium atoms per molecule; m.p. 173–175 °C (lit.,¹⁶ m.p. 176 °C), δ (CDCl₃) 1.15 s, (18-H₃), 3.17 (s, 5-H), 3.70 (s, OMe), 3.81 (s, 3-H), 4.85 and 4.95 (2 br s, 17-H₂); $\delta_{1\rm H} \delta$ (C₆H₆) 1.45, (2β-²H), 1.65, (2α-²H), and 3.5 (6-²H); m/z 349 (M^+ , 7%), 317 (100), 287 (54), and 227 (67).

(b) ent-1 β ,3 α -Dideuterio-3 β ,10-dihydroxy-20-norgibberell-16-ene-7,19-dioic acid 7-Methyl Ester 19,10-Lactone (11). [1 β ,3-²H₂]-3-epi-GA₄ methyl ester (11) (60 mg) in methan[²H]olic sodium methoxide was heated under reflux for 6 h and then worked up as previously described. Double elution p.l.c. of the extract with ethyl acetate-light petroleum (1:1) gave, at R_F 0.5, [1 β ,2,2,3,6-²H₅]-3-epi-GA₄ methyl ester (12) (39 mg) containing 4.12 deuterium atoms per molecule; δ (CDCl₃) 1.17 (s, 18-H₃), 2.15 (s, 1 α -H), 2.52 (s, 5-H), 3.71 (s, OMe), and 4.85 and 4.95 (2 br s, 17-H₂); $\delta_{^{2}H}$ (CHCl₃) 1.5 (1β-²H and 2α-²H), 2.2 (2β-²H), 2.70 (6-²H), and 3.68 (3-²H); m/z 351 (M^+ , 13%), 333 (72), 319 (100), 305 (29), 291 (53), 273 (19), and 229 (28).

Extraction of the band R_F 0.65 gave $[1\beta,2,2,3,6^{-2}H_s]$ -GA₄ methyl ester (25) (10 mg) containing 4.04 deuterium atoms per molecule; δ (CDCl₃) 1.15 (s, 18-H₃), 3.17 (s, 5-H), 3.70 (s, OMe), and 4.85 and 4.96 (2 br s, 17-H₂); $\delta_{^{2}H}$ (C₆H₆) 1.45 (1β-²H and 2β-²H), 1.65 (2α-²H), 3.5 (3-²H), and 2.8 (6-²H); m/z 351 (M^+ , 8%), 333 (16), 319 (100), 289 (58), and 229 (67).

ent-10B-Hydroxy-3-oxo-20-norgibberell-16-ene-7,19-dioic acid 7-Methyl Ester 19,10-Lactone (17).-(a) From 3-epi-GA₄ methyl ester (9), 3-epi-GA₄ methyl ester (5) (50 mg) in acetone (10 ml) was treated dropwise with Jones reagent ¹⁸ with stirring. After 10 min methanol was added and the solvent removed under reduced pressure. The residue was diluted with water and recovered in ethyl acetate. P.l.c. of the product with ethyl acetate-light petroleum (2:1) gave GA₄ methyl ester 3-ketone (17) (40 mg) as a gum; δ (CDCl₃) 1.18 (s, 18·H₃), 2.79 (d, J 10.5 Hz, 6-H), 3.08 (d, J 10.5 Hz, 5-H), 3.72(s, OMe), and 4.88 and 5.00 (2 br s, $17-H_2$); δ (C₅D₅N) 1.41 (s, 18-H₃), 3.09 (d, J 10.5 Hz, 6-H), 3.42 (d, J 10.5 Hz, 5-H), 3.68 (s, OMe), and 4.90 and 5.00 (2 br s, $17-H_2$); δ (C₆D₆), 1.37 (s, 18-H₃), 2.75 (d, J 10.5 Hz, 6-H), 2.84 (d, J 10.5 Hz, 5-H), 3.18 (s, OMe), and 4.85 and 4.95 (2 br s, $17-H_2$); m/z344 (M⁺, 52%), 312 (100), 284 (37), 257 (17), 240 (19), 189 (15), 160 (13), and 91 (25).

(b) From $[2,2,6^{-2}H_3]$ -3-epi-GA₄ methyl ester (10). $[2,2,6^{-2}H_3]$ -3-epi-GA₄ methyl ester (10) was oxidised as described above to give $[2,2,6^{-2}H_3]$ -GA₄ methyl ester 3-ketone (18) containing 2.69 deuterium atoms per molecule; δ_{1H} (CDCl₃) 1.18 (s, 18-H₃), 3.08 (s, 5-H), 3.72 (s, OMe), and 4.88 and 5.00 (2 br s, 17-H₂); δ_{2H} (CHCl₃) 2.6 (2 α -²H and 2 β -²H) and 3.1 (6⁻²H); m/z 347 (M^+ , 66%), 315 (100), 287 (41), 259 (13), 243 (24), 189 (22), and 161 (18).

(c) From $[1\beta,3^{-2}H_2]$ -GA₄ methyl ester (11). $[1\beta,3^{-2}H_2]$ -3-epi-GA₄ methyl ester (11) was oxidised with Jones reagent as previously described to give, after purification by p.l.c., $[1\beta^{-2}H]$ -GA₄ methyl ester 3-ketone (19) containing 0.90 deuterium atoms per molecule; m/z 345 (M^+ , 60%), 313 (100), 285 (46), 258 (19), 241 (23), 189 (25), and 160 (15).

(d) From $[1\beta,2,2,3,6^{-2}H_{5}]$ -3-epi-GA₄ methyl ester (12). $[1\beta,2,2,3,6^{-2}H_{5}]$ -3-epi-GA₄ methyl ester (12) was oxidised as previously described to give $[1\beta,2,2,6^{-2}H_{4}]$ -GA₄ methyl ester 3-ketone (20) containing 3.08 deuterium atoms per molecule; δ_{H} (CDCl₃) 1.18 (s, 18-H₃), 2.50 (s, 1 α -H), 3.08 (s, 5-H), 3.70 (s, OMe), and 4.86 and 4.96 (2 br s, 17-H₂); *m/z* 348 (*M*⁺, 58%), 316 (100), 288 (42), 261 (24), 244 (20), 189 (27), and 161 (19).

ent-16β,17-Epoxy-16β,17-dihydro-3α,10β-dihydroxy-20-

norgibberell-1-ene-7,19-dioic Acid 7-Methyl Ester 19,10-Lactone (32).-Gibberellin A7 methyl ester (5) (150 mg) in chloroform (8 ml) was treated with m-chloroperbenzoic acid (70 mg) at 5 °C for 24 h. The mixture was diluted with chloroform, washed with aqueous sodium sulphite then with aqueous sodium hydrogen carbonate and finally with water. Removal of the solvent under reduced pressure to give a white solid which on purification by p.l.c. with ethyl acetatelight petroleum (6:4) gave, at R_F 0.4, GA₇ 16,17-epoxide methyl ester (32) (102 mg), m.p. 167-169 °C (Found: C, 66.4; H, 6.8. C₂₀H₂₄O₆ requires C, 66.66; H, 6.66%); δ (CDCl₃) 1.25 (s, 18-H₃), 2.83 (d, J 11 Hz, 6-H), 2.84 (s, 17-H₂), 3.19 (d, J 11 Hz, 5-H), 3.74 (s, OMe), 4.16 (d, J 3 Hz, 3-H), 5.91 (d, d J 9 Hz, J 3 Hz, 2-H), 6.34 (d, J 9 Hz, 1-H); m/z 360 (M^+ , 96%), 329 (50), 300 (58), 282 (37), 267 (27), 255 (39), 238 (100), 221 (51), 179 (79), 155 (78), 135 (82), 105 (35), and 91 (69). Elution of band $R_{\rm F}$ 0.7 gave unchanged starting material (5) (40 mg).

ent- 1α , 2α -Dideuterio- 3α , 10β -dihydroxy-20-norgibberell-16ene-7,19-dioic Acid 7-Methyl Ester 19,10-Lactone (26).-Gibberellin A_7 16,17-epoxide methyl ester (33) (100 mg) in tetrahydrofuran (5 ml) was stirred under an atmosphere of deuterium gas in the presence of 10% palladium on calcium carbonate (20 mg) for 1 h at room temperature. The mixture was filtered through Celite and the solvent removed under reduced pressure. Purification by p.l.c. with ethyl acetatelight petroleum (6:4) gave, at R_F 0.4, $[1,2^{-2}H_2]GA_4$ 16,17epoxide methyl ester (34) (75 mg) containing 1.58 deuterium atoms per molecule, m.p. 187-188 °C (Found: C, 65.85; H, 7.25. $C_{20}H_{24}O_6^{2}H_2$ requires C, 65.93; H, 7.69%); δ_{2H} (C₆H₆), 1.5 (1β- and 2β-²H); δ_{1H} (CDCl₃) 1.15 (s, 18-H₃), 2.73 (d, J 11 Hz, 6-H), 2.83 (s, 17-H₂), 3.18 (d, J 11 Hz, 5-H), 3.71 (s, OMe), and 3.84 (d, J 4 Hz, 3-H); m/z 364 (M^+ , 100%), 346 (32), 333 (35), 318 (45), 302 (92), 286 (59), 246 (40), 242 (91), 229 (47), 183 (43), 156 (44), 129 (58), and 91 (50).

The above experiment was repeated and the catalyst prewashed with D_2O and dried thoroughly to give $[1,2^{-2}H_2]$ -GA₄ 16,17-epoxide methyl ester (34) containing 1.82 deuterium atoms per molecule.

Sodium iodide (400 mg) and sodium acetate (150 mg) in ice-cooled glacial acetic acid (7 ml), acetone (1 ml) and water (0.5 ml) were stirred with freshly activated zinc dust (400 mg). [1 β ,2 β -²H₂]-GA₄ epoxide methyl ester (34) (70 mg) in acetone (2 ml) was added dropwise and the mixture stirred for 2 h. The solution was filtered, diluted with ethyl acetate, and washed with aqueous sodium hydrogen carbonate solution. Purification of the extract by p.l.c. with ethyl acetate–light petroleum (1 : 1) gave, at R_F 0.7, [1 β ,2 β -²H₂]-GA₄ methyl ester (26) (45 mg) containing 1.82 deuterium atoms per molecule, m.p. 176—178 °C (lit.,¹⁶ m.p. 176 °C), $\delta_{^{2}H}$ (C₆H₆) 1.45 (1 β -²H and 2 β -²H); $\delta_{^{1}H}$ (CDCl₃) 1.14 (s, 18-H₃), 2.68 (d, J 11 Hz, 6-H), 3.17 (d, J 11 Hz, 5-H), 3.70 (s, OMe), 3.81 (d, J 4 Hz, 3-H), and 4.84 and 4.95 (2 br s, 17-H₂); m/z 348 (M^+ , 3%), 316 (92), 286 (70), 270 (23), 226 (100), and 91 (34).

ent-1 a-Deuterio-3β,10β-dihydroxy-20-norgibberell-16-ene-

7,19-dioic Acid 7-Methyl Ester 19,10-Lactone (16).—[1 β ,2 β -²H₂]-GA₄ methyl ester (26) (20 mg) in acetone (5 ml) was treated dropwise with Jones reagent with stirring. After 10 min methanol (0.5 ml) was added and the solvent removed under reduced pressure. The residue was diluted with water and recovered in ethyl acetate. P.I.c. of the product with ethyl acetate–light petroleum (2:1) gave [1,2-²H₂]-GA₄ methyl ester 3-ketone (21) (18 mg) as a gum, $\delta_{\rm H}$ (CDCl₃) 1.18 (s, 18-H₃), 2.45 (br d, J 7 Hz, 1 α -H), 2.63 (br d, J 7 Hz, 2 α -H), 2.80 (d, J 10.5 Hz, 6-H), 3.07 (d, J 10.5 Hz, 6-H), 3.70 (s, OMe), 4.86 and 4.96 (2 br s, 17-H₂); $\delta_{\rm H}$ (C₆H₅N) 1.42 (s, 18-H₃), 2.30 (br d, J 7 Hz, 1 α -H), 2.62 (br d, J 7 Hz, 2 α -H), 3.11 (d, J 10.5 Hz, 6-H), 3.46 (d, J 10.5 Hz, 5-H), 3.68 (s, OMe), and 4.90 and 5.00 (2 br s, 17-H₂); m/z 346 (M^+ , 55%), 314 (100), and 286 (39).

 $[1,2^{-2}H_2]$ -GA₄ methyl ester 3-ketone (21) (16 mg) in methanol (5 ml) was stirred with sodium borohydride (10 mg). After 1 h the mixture was poured into water, acidified with hydrochloric acid, and extracted with ethyl acetate. Purification of

the extract by flash chromatography gave, from elution with 40% ethyl acetate-light petroleum $[1\beta,2\beta^{-2}H_2]$ -3-*epi*-GA₄ methyl ester (15) (12 mg), m.p. 168—170 °C (lit.,¹⁷ m.p. 166—167 °C) containing 1.69 deuterium atoms per molecule; $\delta_{^{2}H}$ (CHCl₃) 1.45 (1 $\beta^{-2}H$) and 2.2 ($2\beta^{-2}H$); $\delta_{^{1}H}$ (C₅D₅N) 1.55 (s, 18-H₃), 2.83 (d, J 10.5 Hz, 6-H), 3.05 (d, J 10.5 Hz, 5-H), 3.70 (s, OMe), 3.95 (d, J 11 Hz, 3-H), and 4.91 and 5.00 (2 br s, 17-H₂); *m/z* 348, (*M*⁺, 70%), 316 (100), 302 (49), 288 (64), 270 (20), 260 (15), 244 (14), and 226 (20).

[1β-2β-²H₂]-3-*epi*-GA₄ methyl ester (11) (11 mg) in methanolic sodium methoxide was heated under reflux for 6 h and then worked up as previously described. Double elution p.l.c. of the extract with ethyl acetate–light petroleum (1 : 1) gave, at R_F 0.55, [1β-²H]-3-*epi*-GA₄ methyl ester (16) (7 mg) containing 0.9 deuterium atoms per molecule; $\delta_{^{2}H}$ (CHCl₃) 1.45 (1β-²H); $\delta_{^{1}H}$ (C₅D₅N), 1.55 (s, 18-H₃), 2.84 (d, J 10.5 Hz, 6-H), 3.05 (d, J 10.5 Hz, 5-H), 3.70 (s, OMe), 3.95 (br s, 3-H), and 4.91 and 5.00 (2 br s, 17-H₂); m/z 329 (M^+ , 71%), 315 (100), 301 (52), 287 (61), 269 (30), 259 (25), and 225 (19).

Acknowledgements

We thank Mr. N. J. Turner for preliminary work on the deuteriogenation of gibberellin A₇-norketone and Mrs. K. Y. Albone for the purification of gibberellin A₇. We are grateful to Dr. J. R. Bearder of Shell for 360 MHz ¹H n.m.r. spectra.

References

- 1 R. Evans, J. R. Hanson, and A. E. White, J. Chem. Soc. C, 1970, 2601.
- 2 V. M. Frydman and J. MacMillan, Planta, 1975, 125, 181.
- 3 V. M. Sponsel and J. MacMillan, *Planta*, 1977, 135, 129.
 4 M. H. Beale and J. MacMillan, J. Chem. Soc., Perkin Trans. I, Non-Computer Systems 2014.
- 1980, 877.
 5 Z. J. Duri, B. M. Fraga, and J. R. Hanson, J. Chem. Soc., Perkin Trans. 1, 1981, 161.
- 6 J. R. Hanson, Plant Growth Regulatory Group, Monograph 5, 1980, 5.
- 7 J. MacMillan and R. J. Pryce, J. Chem. Soc. C, 1967, 740.
- 8 K. Schreiber, G. Schneide, and G. Sembdner, *Tetrahedron*, 1966, 22, 1437.
- 9 N. Murofushi, R. C. Durley, and R. P. Pharis, Agric. Biol. Chem., 1977, 41, 1075.
- 10 J. W. Cornforth, R. H. Cornforth, and K. K. Matthew, J. Chem. Soc., 1959, 112.
- 11 D. W. Pitel and L. C. Vining, Can. J. Biochem., 1970, 48, 259.
- 12 R. Nadeau and L. Rappaport, Phytochemistry, 1974, 13, 1537.
- 13 D. J. Jones and P. McCloskey, J. Appl. Chem., 1963, 13, 324.
- 14 R. J. Patterson and L. Rappaport, *Planta*, 1974, 119, 183.
- 15 R. C. Durley, I. D. Railton, and R. P. Pharis, *Phytochemistry*, 1973, 12, 1609.
- 16 J. F. Grove, J. MacMillan, T. P. C. Mulholland, and W. B. Turner, J. Chem. Soc., 1960, 3049.
- 17 D. C. Aldridge, J. R. Hanson, and T. P. C. Mulholland, J. Chem. Soc., 1965, 3539.
- 18 K. Bowden, I. M. Heilbron, E. R. H. Jones, and B. C. C. Weedon, J. Chem. Soc., 1946, 39.

Received 22nd July 1983; Paper 3/1254